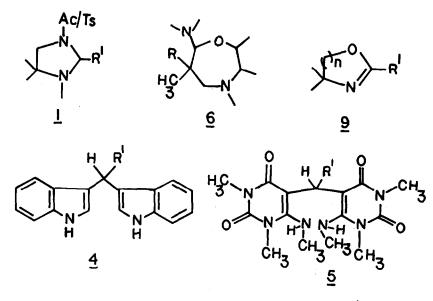
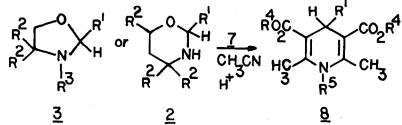
CARBON TRANSFER REACTIONS WITH HETEROCYCLES - V¹. A FACILE SYNTHESIS OF NIFEDIPINE AND ANALOGUES

HARJIT SINGH and KAMALJIT SINGH


Department of Chemistry, Guru Nanak Dev University, Amritsar - 143 005, India


(Received in UK 3 April 1989)

Abstract - Oxazolidines and tetrahydro-(2H)-1.3-oxazines transfer their C(2) units at the carbonyl group oxidation level to $alkyl - \beta$ -amino/anilinocrotonates to form 1.4-dihydropyridines elaborated at C-4.

Synthetic activity in 1,4-dihydropyridines² and their analogs³ has been stimulated by medicinal potential of nifedipine 8h and its analogs⁴ as well as their hydride/enolate ion transfer and other reactions⁵. Their syntheses involve condensations of aldehydes, with amines/ammonia and alkylacetoacetates^b or with alky1- **A**-aminocrotonates⁷. In a unique approach chiral nifedipine analogs are formed from chiral pyridyl dihydrooxazoles and aryl lithium reagents⁸. Imidazolidines $\underline{1}^9$, tetrahydro-(2H)-1,3-oxazines $\underline{2}^1$ and oxazolidines $\underline{3}^{10}$ transfer their C(2) units at carbonyl level to nucleophiles in a synthetically useful manner. These reagents, like aldehydes,¹¹ react with indole to form bisindolylmethane derivatives 4^1 . 6-Amino/alkylamino-1,3-dimethyluracil with <u>1</u> also gives analogous products 5¹². We envisaged that in the acid catalysed reactions of enamines 7 and perhydro-1,3-heterocycles 2,3, initially formed bisenaminylmethane derivatives 14 (see scheme) could undergo cycloelimination to give 1,4-dihydropyridine derivatives 8¹³. This approach could provide a versatile means of elaboration of $\underline{8}$ at C-4, depending upon substitution at C-2 of these model reagents 2,314.

Ethyl- β -aminocrotonate 7a, a relatively stable enamine¹⁵ reacts with (i) 2-phenyl-3,4,4-trimethyloxazolidine 3a, (ii) 2-phenyl-4,4-dimethyloxazolidin. <u>3b</u>, (iii) 2-phenyl-4,4,6-trimethyltetrahydro-(2H)-1,3-oxazine 2b and (iv) 2-phenyltetrahydro-(2H)-1,3-oxazine 2a in anhydrous acetonitrile : acetic acid (10:1) to give diethyl-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5dicarboxylate 8a in yields (Table)¹⁶ comparable with the reported method⁶. As projected, these reactions represent an overall transfer of -C(H)-C₆H₅ fragment between the nucleophilic carbons of two molecules of enamine and elimination of ammonia. Similarly, 7a reacts with (i) 2-methyl-3-phenyloxazolidine 3d and 2,4, 4,6-tetramethyltetrahydro-(2H)-1,3-oxazine 2d, (ii) 3-phenyloxazolidine 3c and tetrahydro-(2H)-1,3-oxazine 2c and (iii) 2-benzyl-4,4,6-trimethyltetrahydro-

R²

н

н

снз

СНЗ

CH3

н

<u>2</u>

<u>R</u>1

<u>a</u>

b

이리 에뷔 데 비비 비 시

^с6^н5

C6H5

н

сн_з

CH2C6H5

сн2он

C6H4 (0-NO2) H

<u>8</u>

₿¹ <u>R</u>3 <u>r</u>2 сн_з с₆н₅ сн_з СНЗ с₆н₅ Н н н с₆н₅ сн3 с₆н₅ н C6H4-СНЗ н (0-NO2) Η -NHR⁵ HC 7 <u>R</u>5 <u>R</u>4 с₂н₅ н ≞ с₂н₅ Сн₃ с₆н₅ <u>b</u>

н

ç

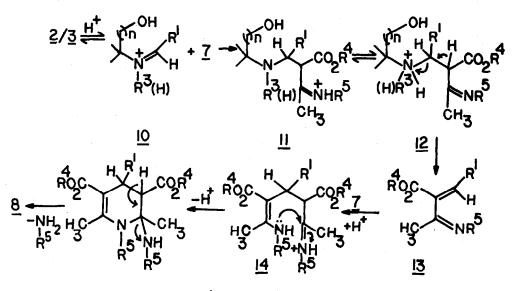
 $C_{6}H_{4}(m-NO_{2})$ C6H4 (p-NO2) H сн_з CH_OAC CH сн_э CH2COOC2H5

	<u>R</u> ¹	<u>R</u> 4	₽ ⁵
a	^с 6 ^н 5	^с 2 ^н 5	н
þ	н	с ₂ н ₅	н
ç	сн _з	с ₂ н ₅	н
₫	CH2C6H5	с ₂ н ₅	н
e	с ₆ н ₅	с ₂ н ₅	^с 6 ^н 5
£	н	с ₂ н ₅	с ₆ н ₅
a	Сн ₃	с ₂ н ₅	^С 6 ^Н 5
<u>h</u>	$C_{6}H_{4}(0-NO_{2})$	СН3	н
i	$C_6H_4(m-NO_2)$	СНЗ	н
i	$C_6H_4(p-NO_2)$	СНЗ	н
<u>k</u>	сн ₂ он	с ₂ н ₅	н
<u>1</u>	CH20AC	с ₂ н ₅	н
m	сн ₂ соос ₂ н ₅	с ₂ н ₅	н
<u>n</u>	CH2COOC2H5	CH3	н

3968

(2H)-1,3-oxazine <u>2e</u>, to furnish (i) <u>8c</u>, (ii) <u>8b</u> and (iii) <u>8d</u> respectively (Table). In contrast to the slow and cumbersome reactions of benzaldehyde/acetaldehyde with ethyl- β -anilinocrotonate <u>7b</u>⁷, it has been found that <u>3a</u>, <u>3b</u>, <u>3c</u>, <u>3d</u> and <u>2a</u>, <u>2c</u> react with <u>7b</u> to furnish corresponding <u>8e</u>, <u>8f</u>, <u>8g</u> in much shorter time, better yields and without the formation of self condensation products of aliphatic aldehydes.

F	Reagents		Product	Reaction	time(h) us	ing Yield(%) using
2	<u>3</u>	2	<u>8</u>	2	<u>3</u>	2	3
2a/2b	<u>3a/3b</u>	<u>7a</u>	<u>8a</u>	4 ^a /5 ^a	6 ^a /4.5 ^a	69/72	73/70
<u>2c</u>	<u>3c</u>	<u>7a</u>	<u>8b</u>	0.1 ^a	3 ^a	90	80
<u>2d</u>	<u>3d</u>	<u>7a</u>	<u>8c</u>	10 ^b	13 ^b	60	56
<u>2e</u>	-	<u>7a</u>	<u>8d</u>	36 ^a	-	70-73	-
<u>2a</u>	<u>3a/3b</u>	<u>7b</u>	<u>8e</u>	0.25 ^a	6 ^a /8 ^a	60	40/35
<u>2c</u>	<u>3c</u>	<u>7b</u>	<u>8f</u>	0.7ª	2.5ª	80	70
-	<u>3đ</u>	<u>7b</u>	<u>8g</u>	-	12 ^a	-	56
<u>2f</u>	<u>3e</u>	<u>7c</u>	<u>8h</u>	12 ^b	10 ^b	75	70
<u>2q</u>	-	<u>7c</u>	<u>81</u>	6-7 ^b	-	70	-
<u>2h</u>	-	<u>7c</u>	<u>81</u>	0.5 ^b	-	63	-
21	-	<u>7a</u>	<u>8k</u>	15 - 16 ^a	_	45-50	
21	-	<u>7a</u>	<u>81</u>	15-20 ^a	-	56	-
<u>2k</u>	-	<u>7a</u>	<u>8m</u>	11 ^b	-	65	-
<u>2k</u>	-	<u>7c</u>	<u>8n</u>	12 ^b	-	55	-


Table Reactions of 2/3 with 7

Reactions run in anhydrous acetonitrile in the presence of : a - AcOH (r.t.), b - TFA (r.t.).

2-(o-Nitro)phenyl-4,4-dimethyloxazolidine $\underline{3e}^{18}$ and 2-(o-nitro)phenyltetrahydro-(2H)-1,3-oxazine $\underline{2f}^{18}$ react with methyl- β -aminocrotonate in anhydrous acetonitrile : trifluoroacetic acid (10:1) to furnish nifedipine $\underline{8h}$ in yields comparable to reported methods¹⁹. Likewise, 2-(m/p-nitro)phenyltetrahydro-(2H)-1,3-oxazines $\underline{2g/2h}^{18}$ react with methyl- β -aminocrotonate $\underline{7c}$ to furnish $\underline{8i}$ and $\underline{8i}$ respectively. Since a myriad of transformations²⁰ are possible in C-2 aryl moiety of 1,3-oxazines/oxazolines, this approach could be used to procure a variety of analogs of nifedipine.

For procuring diethyl-2,6-dimethyl-4-hydroxymethyl-1,4-dihydropyridine-3,5-dicarboxylate <u>8k</u> and dimethyl-2,6-dimethyl-4-acetoxymethyl-1,4-dihydropyridine-3,5-dicarboxylate, multistep, low yield synthetic approaches are reported^{21,22}. Using 2-hydroxymethyl-4,4,6-trimethyltetrahydro-(2H)-1,3-oxazine <u>2i</u>, 2-acetoxymethyl-4,4,6-trimethyltetrahydro-(2H)-1,3-oxazine <u>2j</u> and 2-carbethoxymethyl-4,4, 6-trimethyltetrahydro-(2H)-1,3-oxazine <u>2k</u>, -CH-CH₂OH, -CH-CH₂OAc and -CH-CH₂COOC₂H₅ have been transferred to ethyl and/or methyl- β -aminocrotonates and diethyl-2,6dimethyl-4-hydroxymethyl/acetoxymethyl-1,4-dihydropyridine-3,5-dicarboxylates <u>8k/81</u> and diethyl/dimethyl-2,6-dimethyl-4-carbethoxymethyl-1,4-dihydropyridine-3,5-dicarboxylates <u>8m</u>, m/z 339(M⁺) and <u>8n</u>, m/z 311(M⁺) have been obtained (Table).

Like oxazolidines, tetrahydro-(2H)-1,3-oxazines exhibit ring-chain tautomerism²³ and in the presence of an acid, would generate, iminium cations 10,

(SCHEME)

which could react at nucleophilic α -carbon of alkyl- β -aminocrotonate to form an adduct iminium cation 11 \Rightarrow 12, and subsequently alkylidene imine 13. Further reaction with second molecule of nucleophile followed by cycloelimination could finally yield 8 (Scheme).

These few reactions demonstrate the utility of tetrahydro-(2H)-1,3-oxazine derivatives in the incorporation of functionalized groups at C-4 position of 1,4-dihydropyridine derivatives. Since many structural changes can be made at C-2 of 1,3-oxazines by using different acids/nitriles etc. for their formation, or by reactions at C-2 alkyl/alkenyl/aryl groups, syntheses of many more analogs of 1,4-dihydropyridines can be envisaged.

EXPERIMENTAL

General experimental details are given in reference 1.

Oxazolidines and oxazines - 2-Phenyl-3,4,4-trimethyloxazolidine 3a²⁴, 2-phenyl-4,4-dimethyloxazolidine 3b²⁵, 3-phenyloxazolidine 3c²⁶, 2-methyl-3-phenyloxazolidine 3d²⁷, 2-phenyl-tetrahydro-(2H)-1,3-oxazine 2a²⁸, 2-phenyl-4,4,6trimethyltetrahydro-(2H)-1,3-oxazine 2b¹⁴, tetrahydro-(2H)-1,3-oxazine 2c²⁹, 2,4,4,6-tetramethyltetrahydro-(2H)-1,3-oxazine 2d¹⁴, 2-benzyl-4,4,6-trimethyltetrahydro-(2H)-1,3-oxazine 2e¹⁴, 2-hydroxymethyl-4,4,6-trimethyltetrahydro-(2H)-1,3-oxazine 21¹, 2-acetoxymethyl-4,4,6-trimethyltetrahydro-(2H)-1,3oxazine 21¹ and 2-carbethoxymethyl-4,4,6-trimethyltetrahydro-(2H)-1,3-oxazine¹⁴ 2k¹⁴ were obtained by reported methods. For procuring 2-(o-nitro)phenyl-4,4dimethyloxazolidine 3e and 2-(o-/m-/p-nitro)phenyl tetrahydro-(2H)-1,3-oxazines 2f-h, appropriate nitrobenzaldehyde has been condensed with 2-amino-2-methyl-1propanol/ 7-hydroxypropylamine by method of Agami³⁰ using anhydrous methanol as solvent. <u>3e</u> : yield : 88%; IR(Neat) : 1700, 1543, 1330 cm⁻¹; ¹H NMR (CDCl₃)³¹: \$1.15, 1.3(6H, 2xCH₃, singlets), 2.35(1H, NH, D₂O exchangeable, br), 3.5, 3.57 (2H, CH₂, singlets), 6.0, 8.6 (1H, C(2)H and =C-H respectively, singlets), 7.15-8.0(4H, ArH, m); Mass : M⁺ m/z 222.

<u>2f</u> : yield : 93%; IR(Neat): 1650, 1550, 1370 cm⁻¹; ¹H NMR (CDCl₃)³¹: **5**2.19

```
(2H, C(5)H, quintet, J = 6Hz), 3.40(1H, NH, D<sub>2</sub>O exchangeable, br), 3.65(2H,
C(4)H, t, J = 6Hz), 3.70(2H, C(6)H, t, J = 6Hz), 5.5 and 8.5(1H, C(2)H and
=C-H, singlets), 7.0-8.0(4H, ArH, m); Mass: M<sup>+*</sup> m/z 208.
2g : yield : 83%; IR(Neat): 1550, 1380 cm<sup>-1</sup>; <sup>1</sup>H NMR(CDCl<sub>3</sub>): 5 1.95(2H, C(5)H,
quintet, J = 6Hz), 3.2(1H, NH, D<sub>2</sub>O exchangeable, br), 3.1-4.0(4H, C(4)H and
C(6)H, m), 5.1(1H, C(2)H, s), 7.0-8.5(4H, ArH, m); Mass : M<sup>+*</sup> m/z 208.
2h : yield : 60%; IR(Neat); 1570, 1360 cm<sup>-1</sup>; <sup>1</sup>H NMR(CDCl<sub>3</sub>) : 5 1.97(2H, C(5)H,
quintet, J = 6Hz), 2.8(1H, NH, D<sub>2</sub>O exchangeable, br), 3.8(4H, C(4)H and
C(6)H, m), 5.2(1H, C(2)H, br), 7.3-8.4(4H, ArH, m); Mass: M<sup>+*</sup> m/z 208.
Reactions of oxazolidines <u>3</u> and tetrahydro-(2H)-1,3-oxazines <u>2</u> with alkyl <u>β</u>-
```

aminocrotonates 7 : General Procedure :

A solution of alkyl- β -aminocrotonate (0.02 mole) and <u>3/2</u> (0.01 mole) in anhydrous acetonitrile (30-40 ml) containing an acid (10:1) (Table) was stirred till the reaction was completed (tlc). The reaction mixture was basified with cold aqueous sodium carbonate solution and extracted with chloroform (3x50 ml). Combined chloroform extract was washed with cold water (2x50 ml) and dried (anhydrous sodium sulphate). Solvent was removed and the residue was chromatographed over silica gel G(60-120 mesh) using hexane, benzene, chloroform, ethyl acetate and their mixtures as eluents.

Using the above procedure, following products have been obtained.

<u>Diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate(8a)</u>; m.p. 156^oC (Lit. 157^o)⁶; λ_{max} (CH₃OH): 355, 235 nm; IR(KBr) : 1680 cm⁻¹; ¹H NMR (CDCl₃): § 1.15(6H, 2xCH₃, t, J = 6Hz), 2.15(6H, 2xCH₃, s), 3.95(4H, 2xCH₂, q, J = 6Hz), 4.85(1H, CH, s), 5.70(1H, NH, D₂O exchangeable, br), 6.90-7.30 (5H, ArH, m).

<u>Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (8b)</u> : m.p. 182-83^oC (Lit. 184^o)⁶, λ_{max} (CH₃OH) : 370, 230 nm; IR(KBr): 1670 cm⁻¹; ¹H NMR(CDCl₃): δ 1.2(6H,2xCH₃, t, J = 7Hz), 2.1(6H, 2xCH₃, s), 3.1(2H, CH₂, s), 4.05(4H, 2xCH₂, q, J = 7Hz), 5.25(1H, NH, D₂O exchangeable, br).

<u>Diethyl 2,4,6-trimethyl-1,4-dihydropyridine-3,5-dicarboxylate (8c)</u>: m.p. 131°C (Lit. 131°)⁶; λ_{max} (CH₃OH): 350, 235 nm; IR(KBr): 1690 cm⁻¹; ¹H NMR(CDCl₃): **§**1.05(3H, CH₃, d, J = 6Hz), 1.4(6H, 2xCH₃, t, J = 7Hz), 2.35(6H, 2xCH₃, s), 3.85(1H, CH, q, J = 6Hz), 4.25(4H, 2xCH₂, q, J = 7Hz), 4.95(1H, NH, D₂O exchangeable, br).

Diethyl 2,6-dimethyl-4-benzyl-1,4-dihydropyridine-3,5-dicarboxylate(8d): m.p. $115-17^{\circ}C$ (Lit. 115°)⁶; λ_{max} (CH₃OH): 350, 230 nm; IR(KBr): 1680 cm⁻¹; ¹H NMR(CDCl₃): \$1.2(6H, 2xCH₃, t, J = 7Hz), 2.1(6H, 2xCH₃, s), 2.51(2H, CH₂, d, J = 7Hz), 4.0(4H, 2xCH₂, q, J = 7Hz), 4.4(1H, CH, t, J = 7Hz), 5.65(1H, NH, D₂O exchangeable, br), 6.7-7.4(5H, ArH, m).

Diethyl 2,6-dimethyl-1,4-diphenyldihydropyridine-3,5-dicarboxylate (8e): m.p. 155°C (Lit. 155°)⁷; λ_{max} (CH₃OH): 350, 237 nm; IR(KBr): 1622 cm⁻¹; ¹H NMR (CDCl₃): **\$**1.4(6H, 2xCH₃, t, J = 6Hz), 2.65(6H, 2xCH₃, s), 4.25(4H, 2xCH₂, q, J = 6Hz), 4.95(1H, CH, s), 6.0-7.25(10H, ArH, m).

Diethyl 2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (8f) : m.p. 99° C; λ_{max} (CH₃OH): 345, 235 nm; IR(KBr): 1670 cm⁻¹; ¹H NMR(CDCl₃): $1.15(6H, 2xCH_3, t, J = 6Hz)$, 1.8(6H, 2xCH₃, s), 3.25(2H, CH₂, s), 4.05(4H, 2xCH₂, q, J = 6Hz), 6.8-7.4(5H, ArH, m); Mass : M⁺ m/z 329.

<u>Diethyl 2,4,6-trimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (8g)</u>:m.p. 99-101^oC(Lit.104-105^o)⁷, \dot{A}_{max} (CH₃OH): 347, 236 nm; IR(KBr): 1680 cm⁻¹; ¹H NMR (CDCl₃): § 1.1(3H, CH₃, d, J = 6Hz), 1.3(6H, 2xCH₃, t, J = 7Hz), 2.0(6H, 2xCH₃, s), 3.7(1H, CH, q, J = 6Hz), 4.15(4H, 2xCH₂, q, J = 7Hz), 7.35(5H, ArH, m).

<u>Dimethyl 2,6-dimethyl-4-(o-nitro)phenyl-1,4-dihydropyridine-3,5-dicarboxylate</u> (<u>nifedipine</u>) (8h) : m.p. 169^oC (Lit. 172^o)¹⁹; λ_{max} (CH₃OH): 340, 230 nm; IR(KBr): 1680, 1520, 1340 cm⁻¹; ¹H NMR(CDCl₃): § 2.23(6H, 2xCH₃, s), 3.45(6H, 2xOCH₃, s), 5.5(1H, CH, s), 5.7(1H, NH, D₂O exchangeable, br), 7.05-7.65(4H, ArH, m).

Dimethyl 2,6-dimethyl-4-(m-nitro)phenyl-1,4-dihydropyridine-3,5-dicarboxylate(8i): m.p. 200°C (Lit. 206°)¹⁹; ∂_{max}(CH₃OH): 350, 230nm; IR(KBr): 1660, 1535, 1510, 1360 cm⁻¹; ¹H NMR(CDCl₃): § 2.4(6H, 2xCH₃,s), 3.6(6H, 2xOCH₃,s), 5.1(1H, CH, s), 7.0-8.5(4H, ArH, m), 6.1(1H, NH, D₂O exchangeable, br).

<u>Diethyl 2,6-dimethyl-4-hydroxymethyl-1,4-dihydropyridine-3,5-dicarboxylate(8k)</u>: m.p. 135^oC (Lit. 135^o)²¹, λ_{max} (CH₃OH): 355, 233 nm; IR(KBr): 1725, 1680 cm⁻¹; ¹H NMR(CDCl₃): § 1.35(6H, 2xCH₃, t, J = 6Hz), 2.3(6H, 2xCH₃, s), 3.65(2H, CH₂, m), 4.0(1H, CH, br), 4.25(4H, 2xCH₂, q, J = 6Hz), 6.0(1H, NH, D₂O exchangeable, br).

Diethyl 2,6-dimethyl-4-acetoxymethyl-1,4-dihydropyridine-3,5-dicarboxylate(81): thick liquid; $\lambda_{max}(CH_3OH)$: 345, 232 nm; IR(CHCl₃): 1715, 1680, 1640 cm⁻¹; ¹H NMR(CDCl₃): 5 1.3(6H, 2xCH₃, t, J = 6Hz), 1.19(3H, CH₃, s), 2.25(6H, 2xCH₃, s), 3.85(2H, CH₂, d, J = 6Hz), 4.1(4H, 2xCH₂, q, J = 6Hz), 4.22(1H, CH, t, J = 6Hz); Mass: M⁺ m/z 325.

Diethyl 2,6-dimethyl-4-carbethoxymethyl-1,4-dihydropyridine-3,5-dicarboxylate(8m): m.p. 77°C (benzene : petr. ether (40-60°)); λ_{max} (CH₃OH): 340, 232 nm; IR(KBr): 1723, 1693 cm⁻¹; ¹H NMR(CDCl₃): δ 1.30(9H, 3xCH₃, two fused triplets, J = 7Hz), 2.89(6H, 2xCH₃, s), 3.85(2H, CH₂, d, J = 6Hz), 4.14, 4.21(6H, 3xCH₂, two quartets, J = 7Hz), 4.43(1H, CH, t, J = 6Hz), 6.3(1H, NH, D₂O exchangeable, br); Mass : M^{+•} m/z 339; (Found : C, 57.58; H, 6.84. C₁₇H₂₅NO₆ requires: C,57.87; H,6.75%).

<u>Dimethyl 2,6-dimethyl-4-carbethoxymethyl-1,4-dihydropyridine-3,5-dicarboxylate(8n)</u>: m.p. 115-17°C (benzene petr. ether (40-60°)); λ_{max} (CH₃OH) 340, 230 nm, IR(KBr); 1714, 1684, 1644 cm⁻¹; ¹H NMR(CDCl₃): \int 1.22(3H, CH₃, t, J = 7Hz), 1.77(1H, NH, D₂O exchangeable, br), 2.30(6H, 2xCH₃, s), 3.72(6H, 2xOCH₃, s), 3.81(2H, CH₂, d, J = 7Hz, overlapping the singlet at 3.72), 4.01(2H, CH₂, q, J = 7Hz), 4.29 (1H, CH, t, J = 6Hz); Mass: M⁺ m/z 311; (Found: C,60.65; H,7.33. C₁₅H₂₁NO₆ requires: C,60.10; H,7.38%).

<u>Acknowledgements</u> : We thank UGC, New Delhi for a senior research fellowship to KS and RSIC Chandigarh and CDRI Lucknow for analysis and mass spectra.

References and Notes

- To whom correspondance should be addressed.
- 1 Part IV, H.Singh and K.Singh, Tetrahedron, 42, 5897 (1988).
- 2 A.Sausins and G.Duburs, Heterocycles, 27, 269 (1988).
- 3 R.J.Chorvat and K.J.Rorig, J. Org. Chem., <u>53</u>, 5779 (1988).
- 4 F.Bossert, H.Meyer and E.Wehinger, Angew. Chem., Int. Ed. Engl. 20,762 (1981); L.H.Opie, F.T.Thandroyen, C.A.Muller and C.W.Hamm, Perspect.

Cardiovasc. Res. <u>303</u>, 9(1984); E.Antman, J.Muller, S.Goldberg, R.MacAlpin,
M.Rubenfire, B.Tabatznik, C.Liang, F.Heupler, S.Achuff, N.Reichek,
E.Geltman, N.Z.Kerin, R.K.Neff and E.N.Braunweld, Engl. J. Med., <u>302</u>,
1269 (1980); M.Guazzi, M.T.Olivari, A.Polese, C.Fiorentini, F.Margrini,
and P.Moruzzi, Clin. Pharmacol. Ther., <u>22</u>, 528 (1977); R.S.Hornung,
B.A.Gould, R.I.Jones, T.N.Sonecha and E.B.Raferty, Am. J. Cardiol., <u>51</u>,
1323 (1983) and references cited therein.

- A.Sausins and G.Duburs, Heterocycles, <u>27</u>, 291 (1988); A.I.Meyers and J.Brown, J. Am. Chem. Soc., <u>109</u>, 3155 (1987); J.C.G.V.Niel and U.K.Pandit, Tetrahedron, <u>41</u>, 6005 (1985); T.J.V.Bergen, T.Mulder, R.A.V.Veen and R.M.Kellogg, Tetrahedron, <u>34</u>, 2377 (1978); S.H.Mashraqui and R.M.Kellogg, J. Am. Chem. Soc., <u>105</u>, 7792 (1983); S.D.Young, S.W.King and D.C.Remy, Heterocycles, <u>26</u>, 3081, (1987); G.D.Hartman, B.J.Phillips, J.P.Springer and J.Hirshfield, J.Heterocycl. Chem., <u>24</u>, 1397 (1987); D.H.Kim, J. Heterocycl. Chem., 23(5), 1471 (1986); T.McInally and A.C.Tinker, J. Chem. Soc., Perkin Trans.I, 1837 (1988) and references cited therein.
- 6 B.Loev and K.M.Snader, J. Org. Chem., <u>30</u>, 1914 (1965); V.W.Traber and P.Kesser, Helv. Chim. Acta, <u>41</u>, 2066 (1958).
- 7 J.G.Erickson, J. Am. Chem. Soc., <u>67</u>, 1382 (1945); A.P.Phillips, J. Am. Chem. Soc., <u>71</u>, 4003 (1949).
- 8 A.I.Meyers and T.Oppenlaender, J. Chem. Soc., Chem. Commun., 920 (1986).
- 9 A.R.Stoit and U.K.Pandit, Tetrahedron, <u>41</u>(16), 3355 (1985).
- 10 H.Singh and R.Sarin, J. Chem. Res.(S),(M), 000 (1988).
- 11 A.Kamal and A.A.Qureshi, Tetrahedron, 19, 513 (1963).
- H.Bieraugel, R.Plemp, H.C.Hiemstra and U.K.Pandit, Tetrahedron, <u>39</u>(23), 3971 (1983). However, N-substituted oxazolidines and enamines (>N-CH = C(Me)R) in the presence of TFA provide 1,4-oxazepine derivatives <u>6</u> (H.Griengl, G.Prischl and A.Bleikolm, Liebigs Ann. Chem., 1573 (1980)).
- 13 H.Singh, R.Sarin and K.Singh, Heterocycles, 24, 3039 (1986).
- 14 A.I.Meyers, A.Nabeya, H.W.Adickes, I.R.Politzer, G.R.Malone, A.C.Kovelesky, R.L.Nolen and R.C.Portnoy, J. Org. Chem., <u>38</u>, 36 (1973).
- 15 R.Robinson, J. Chem. Soc., <u>109</u>, 1038 (1916);
- 16 Substituents in these reagents do not affect the mode of reaction.
- 17 Compounds <u>Ba-e</u> and <u>Bg</u> compared (m.p., tlc, i.r) with authentic samples.
- 18 These reagents have been prepared by using aldehydes because the corresponding nitriles or acids to procure <u>9</u> were not available.
- 19 F.Bossert and W.Vater, S.African 68, 01, 482 (07 Aug 1968), Chem. Abstr., <u>70</u>, 96641d (1969); W.Lee and J.W.Chern, Tai-Wan Yao Hsueh Tsa Chih, <u>39</u>(3), 202 (1987), Chem. Abstr., <u>109</u>; 230743t (1988).
- 20 A.I.Meyers and E.D.Mihelich in 'New Synthetic Methods', Verlag Chemie, Weinheim, <u>5</u>, 105 (1979).
- 21 R.M.Kellogg, T.J.V.Bergen and H.Wynberg, Tetrahedron Letts., <u>59</u>, 5211 (1969).
- J.Ashby, L.A.Cort and J.A.Elvidge, J. Chem. Soc.(C), 2311 (1968).
- 23 F.Fulop, K.Pilevi, J. Mattinen and G.Bernath, J. Org. Chem., <u>52</u> (17), 3821 (1987).

- 24 I.C.Nordin, J.Heterocycl. Chem., 3, 531 (1966).
- 25 M.Senkus, J. Am. Chem. Soc., <u>67</u>, 1515 (1945).
- 26 G.A.R.Kon and J.J.Roberts, J. Chem. Soc., 978 (1950).
- 27 E.Zimkin and E.D.Bergman, Rec. Trav. Chim., <u>71</u>, 229 (1952), Chem. Abstr., <u>47</u>, 6400f (1953).
- 28 A.I.Kiprianov and B.A.Rashkovan, J. Gen. Chem., (USSR), <u>7</u>, 1026, (1937), Chem. Abstr., <u>31</u>, 5356 (1937).
- 29 R.A.Y.Jones, A.R.Katritzky and D.L.Trapanier, J. Chem. Soc., 1300 (1971).
- 30 C.Agami and T.Rizk, Tetrahedron, <u>41</u>(3), 537 (1985).
- 31 Extra signals appear due to ring chain tautomerism.

H(δ5.5) Ph(o-NO_

Ratio 1:3.16